modal-unbiased estimate - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

modal-unbiased estimate - traduction vers russe

EXPECTATION OF ERROR OF ESTIMATION
Unbiased estimator; Biased estimator; Estimator bias; Unbiased estimate; Unbiasedness

modal-unbiased estimate      

математика

модальная несмещенная оценка

modal operator         
LOGICAL OPERATOR IN MODAL LOGIC
Modal connective

математика

модальный оператор

shan't         
UNINFLECTED VERBS IN ENGLISH
Can't; Couldn't; Shouldn't; Wouldn't; Won't; Would; Should; Needn't; Wouldest; Could; Modal stacking; Canst; Double modal; Shan't; Might could; English modal auxiliary verb; Can (verb); Semi-modal; Cannot; Modal verbs in English; English modal verb; Mustn't; Daren't; Mayn't; Mightn't; Ought to; Oughta; Oughtn't; Had better; Hadn't better; Have to; Has to; Had to; Double modals; Shoud; Had To

[ʃɑ:nt]

сокращение

от shall not

глагол

собирательное выражение

shall not

Définition

can't
Can't is the usual spoken form of 'cannot'.

Wikipédia

Bias of an estimator

In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called unbiased. In statistics, "bias" is an objective property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more.

All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased estimator may be unbiased with respect to different measures of central tendency; because a biased estimator gives a lower value of some loss function (particularly mean squared error) compared with unbiased estimators (notably in shrinkage estimators); or because in some cases being unbiased is too strong a condition, and the only unbiased estimators are not useful.

Bias can also be measured with respect to the median, rather than the mean (expected value), in which case one distinguishes median-unbiased from the usual mean-unbiasedness property. Mean-unbiasedness is not preserved under non-linear transformations, though median-unbiasedness is (see § Effect of transformations); for example, the sample variance is a biased estimator for the population variance. These are all illustrated below.

Traduction de &#39modal-unbiased estimate&#39 en Russe